One final parameter that was carefully evaluated during the monitoring period was power factor, but this was found to be good at all times, with little opportunity for further improvement. This was probably because the school had few inductive loads, and those few were balanced out by capacitive loads such as LED lighting. In other applications and even in other schools this may not be the case, so careful attention should always be given to the power factor results when a monitoring exercise is carried out.
The power system monitoring exercise at the Kent school clearly identified some issues of concern but unfortunately, shortly after it was completed, the advent of the COVID pandemic meant that the governors and staff were beset by more pressing challenges which prevented immediate action on its results. Nevertheless, the exercise has produced some clear recommendations for the future, which should provide large benefits.
The first – turning off portable heaters out of hours – has already been implemented but this is only an interim solution. Longer term, larger energy savings will be achieved by upgrading the HVAC system so that heaters are not needed at all. There may also be other unnecessary out-of-hours loads, such as lighting and computers left on when not needed, and it would be worthwhile for the school to check on these and, for example, fit automatic lighting controls that respond to room occupancy, and time switches to turn off supplies to computers at the end of the day.
The high level of harmonics should certainly be addressed. It would be beneficial to identify the individual sources and, where necessary, fit filters. The result will be cleaner supplies, reduced cable heating and longer equipment life. Finally, it would definitely be worthwhile to look at redistributing the single-phase loads on the power system to provide better balance between phases. Again, this would reduce heating in neutral conductors, and help to ensure that any three-phase loads on the system operate efficiently.
Monitoring power quality and usage at the Kent school was an exercise which was easy and inexpensive to carry out, and which did not affect the normal operation of the school in any way. It did, however, provide results and insights that will allow the school to use electrical energy more efficiently and to reduce its energy bills. It can be confidently stated, therefore, that the answer to the question posed in the introduction about how useful portable energy loggers are in real applications is that they are very useful indeed!